Abstract

Nonlinear partial differential equations of motion for a laminated plate in a general state of non-uniform initial stress are presented in various plate theories. This study uses Lo’s displacement field to derive the governing equations. The higher-order terms in Lo’s theory can be disregarded, to obtain the equations of simpler forms and even other theories for laminated plate. These nonlinear partial equations are transformed to ordinary nonlinear differential equations using the Galerkin method. The Runge–Kutta method is used to obtain the ratio of nonlinear frequency to linear frequency. The numerical solutions of an initially stressed laminate plate based on various plate theories obtained by the Galerkin and Runge–Kutta method are presented herein. Using these equations with various theories, the nonlinear vibration behavior of laminated plate is studied. The results show that apparent discrepancies exist among the various displacement fields, which indicates the transverse shear strain, normal strain and initial stress state have great effect on the vibration behavior of laminate plate under nonlinear vibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call