Abstract

The local heating of the solar-wind gas during its expansion represents one of the most intriguing problems in space plasma physics and is at present the subject of a relevant scientific effort. The possible mechanisms that could account for local heat production in the interplanetary medium are most likely related to the turbulent character of the solar-wind plasma. Nowadays, many observational and numerical analyses are devoted to the identification of fluctuation channels along which energy is carried from large to short wavelengths during the development of the turbulent cascade; these fluctuation channels establish the link between macroscopic and microscopic scales. In this Letter, by means of a quantitative comparison between in situ measurements in the solar wind from the STEREO spacecraft and numerical results from kinetic simulations, we identify an electrostatic channel of fluctuations that develops along the turbulent cascade in a direction parallel to the ambient magnetic field. This channel appears to be efficient in transferring the energy from large Alfvenic to short electrostatic acoustic-like scales up to a range of wavelengths where it can finally be turned into heat, even when the electron to proton temperature ratio is of the order of unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.