Abstract
AbstractAt the beginning of 2007 the twin STEREO spacecraft provided a unique opportunity to study the global solar wind control of the terrestrial magnetotail under typical solar activity minimum conditions. The STEREO‐B (STB) spacecraft flew in the vicinity of the far terrestrial magnetotail, while the STEREO‐A (STA) spacecraft was located in front of the Earth performing measurements in the undisturbed solar wind. In February, the STB spacecraft was located in the magnetosheath most of the time but experienced several incursions into the distant magnetotail. Comparison of STA and STB observations determines unambiguously whether solar wind events such as energetic particle enhancements observed by STB are of pure solar origin or due to the influence of the terrestrial magnetosphere. During this time period in 2007, there were solar minimum conditions with alternating fast and slow solar wind streams that formed corotating interaction regions, which were the dominating source of magnetospheric disturbances encountering the Earth almost every week. Under these conditions, STB experienced multiple bow shock and magnetopause crossings due to the induced highly dynamic behavior of the terrestrial magnetotail and detected bursts of tailward directed energetic ions in the range of 110–2200 keV accompanied by suprathermal electrons of ~700–1500 eV, which were not seen in the undisturbed solar wind by STA. The corotating interaction regions triggered these energetic particle enhancements, and we demonstrate their magnetosphere‐related origin. Even after leaving the magnetosheath in March 2007, STB continued to observe antisunward directed energetic ion bursts until May up to a distance of ~ 800 RE behind Earth, the largest distance to which solar wind and magnetospheric interaction has been observed. These results show that Earth is a very significant source of energetic particles in its local interplanetary environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.