Abstract
The stochastic two-dimensional Cahn–Hilliard–Navier–Stokes equations under non-Lipschitz conditions are considered. This model consists of the Navier–Stokes equations controlling the velocity and the Cahn–Hilliard model controlling the phase parameters. By iterative techniques, a priori estimates and weak convergence method, the existence and uniqueness of an energy weak solution to the equations under non-Lipschitz conditions have been obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have