Abstract
AbstractWhite (2015) proposes an a priori justification of the reliability of inductive prediction methods based on his thesis of induction-friendliness. It asserts that there are by far more induction-friendly event sequences than induction-unfriendly event sequences. In this paper I contrast White's thesis with the famous no free lunch (NFL) theorem. I explain two versions of this theorem, the strong NFL theorem applying to binary and the weak NFL theorem applying to real-valued predictions. I show that both versions refute the thesis of induction-friendliness. In the conclusion I argue that an a priori justification of the reliability of induction based on a uniform probability distribution over possible event sequences is impossible. In the outlook I consider two alternative approaches: (i) justification externalism and (ii) optimality justifications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have