Abstract
The genes encoding the Neisseria lactamica restriction endonuclease IV (R.NlaIV) and its cognate DNA methyltransferase (M.NlaIV), both of which recognize the sequence GGNNCC, have been cloned in Escherichia coli and overexpressed using the T7 polymerase/promoter system. Analysis of a sequenced 3.58 kb fragment established the gene order, leuD-M.NlaIV-R.NlaIV-leuB. The predicted primary sequence of M.NlaIV (423 amino acids) shows the highest degree of identity to a pair of cytosine-specific methyltransferases, M.BanI (44.9%) and M.HgiCI (44.3%), which recognize the sequence GGYRCC (Y, pyrimidines; R, purines). In contrast, the R.NlaIV protein sequence (243 amino acids) is unique in the existing data-base, a situation that holds for most endonucleases. Flanking the NlaIV modification and restriction genes are homologues of the leuD and leuB genes of enteric bacteria, which code for enzymes in the leucine biosynthesis pathway. This gene context implies a possible new mode of gene regulation for the RM.NlaIV system, which would involve a mechanism similar to the recently discovered leucine/Lrp regulon in E. coli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.