Abstract
Despite the increasing number of publications on non-conventional yeasts (NCYs), many areas in this field remain poorly understood, making the examination of these strains important for determining their potential in wine fermentations. The amino acid metabolic pathways involved, particularly the catabolic Ehrlich pathway but also anabolic pathways such as the leucine biosynthesis pathway, are crucial for producing high-value aroma compounds that contribute to the final flavour of wine. We examined the potential use of Saccharomycopsis fermentans in wine fermentations. We selected mutant strains resistant to the toxic compound trifluoro-leucine (TFL), verified mutations in the SfLEU4 gene, and characterized the ability of the resulting strains to contribute to fermentation bouquets. Resistance to TFL relieves feedback inhibition in the leucine biosynthesis pathway and resulted in increased leucine biosynthesis. Concomitantly, the S. fermentans TFL-resistant mutants generated increased amounts of isoamyl alcohol and isovalerate during wine fermentation. Selection of TFL-resistant strains thus provides a generally applicable strategy for the improvement in NCYs and their utilization in co-fermentation processes for different grape must varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.