Abstract

As a crucial nitrogen source, nitrate (NO3-) is a key nutrient for plants. Accordingly, root systems adapt to maximize NO3- availability, a developmental regulation also involving the phytohormone auxin. Nonetheless, the molecular mechanisms underlying this regulation remain poorly understood. Here, we identify low-nitrate-resistant mutant (lonr) in Arabidopsis (Arabidopsis thaliana), whose root growth fails to adapt to low-NO3- conditions. lonr2 is defective in the high-affinity NO3- transporter NRT2.1. lonr2 (nrt2.1) mutants exhibit defects in polar auxin transport, and their low-NO3--induced root phenotype depends on the PIN7 auxin exporter activity. NRT2.1 directly associates with PIN7 and antagonizes PIN7-mediated auxin efflux depending on NO3- levels. These results reveal a mechanism by which NRT2.1 in response to NO3- limitation directly regulates auxin transport activity and, thus, root growth. This adaptive mechanism contributes to the root developmental plasticity to help plants cope with changes in NO3- availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call