Abstract
From the traditional perspective of associative learning theory, the hypothesis linking modifications of synaptic transmission to learning and memory is plausible. It is less so from an information-processing perspective, in which learning is mediated by computations that make implicit commitments to physical and mathematical principles governing the domains where domain-specific cognitive mechanisms operate. We compare the properties of associative learning and memory to the properties of long-term potentiation, concluding that the properties of the latter do not explain the fundamental properties of the former. We briefly review the neuroscience of reinforcement learning, emphasizing the representational implications of the neuroscientific findings. We then review more extensively findings that confirm the existence of complex computations in three information-processing domains: probabilistic inference, the representation of uncertainty, and the representation of space. We argue for a change in the conceptual framework within which neuroscientists approach the study of learning mechanisms in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.