Abstract

The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders.

Highlights

  • The parathyroid hormone 2 receptor (PTH2R) is a member of the family B of G-protein coupled receptors

  • Local injection of tuberoinfundibular peptide of 39 residues (TIP39) above the paraventricular hypothalamic nucleus (PVN) in mice elevated plasma corticosterone levels in addition to increasing the number of pCREB-containing activated cells in and around the paraventricular nucleus (PVN) (Dimitrov and Usdin, 2010). These effects of local TIP39 were not present in PTH2R knockout (KO) animals (Dimitrov and Usdin, 2010) excluding non-specific actions of TIP39 injection. These results suggest that the TIP39-PTH2R system is positioned and available to potentially modulate activation of the hypothalamus-pituitary-adrenal (HPA) axis

  • The TIP39-PTH2R neuromodulator system may play an important role in the regulation of several different aspects of neuroendocrine functions

Read more

Summary

Introduction

The parathyroid hormone 2 receptor (PTH2R) is a member of the family B (type II) of G-protein coupled receptors. It has been demonstrated that somatostatin neurons express the PTH2R (Wang et al, 2000; Dobolyi et al, 2006a) and that both TIP39- and PTH2R-containing terminals approximate CRH-expressing neurons in the parvicellular subdivision of the hypothalamic paraventricular nucleus (PVN; Bago et al, 2009; Dimitrov and Usdin, 2010).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call