Abstract
The primary objective of this study was to investigate the neural basis of self-ambivalence, a phenomenon firmly established by behavioral research but whose underlying brain mechanisms have been less explored. Employing EEG methods and a modified self-reference paradigm, we analyzed event-related potentials using a linear mixed model to determine whether self-ambivalence processing exhibits a distinct neural representation. The results indicated that self-ambivalence processing primarily affected the late components (N2, N450, and P3), with N450 activation in the midline brain regions showing a significant positive correlation with scores on the Dialectical Self Scale. This finding suggests that individuals with higher levels of self-ambivalence may engage in more extensive processing of self-ambivalent information. The current study confirms the importance of the cortical midline in self-ambivalence and provides the first evidence of a distinct EEG representation of self-ambivalence processing. These findings contribute to our understanding of the neural mechanisms underlying self-ambivalence and highlight the potential role of individual differences in shaping the neural processing of self-ambivalent information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.