Abstract
Prenatal air pollution, protein C (PROC) gene abnormal methylation, and genetic mutation can cause a series of neonatal diseases, but the complex relationship between them remains unclear. Here, we recruited 552 mothers and their own babies during January 2010-January 2012 in Zhengzhou to explore such association. The air pollutant data was obtained from the Environmental Monitoring Stations. The rs1799809 genotype and the methylation levels at the promoter region of PROC in genomic DNA samples were detected respectively by TaqMan probe and quantitative methylation specific PCR using real-time PCR system. The results show that the levels of neonatal PROC methylation were negatively associated with concentrations of NO2 during the entire pregnancy, particularly during the third trimester. Of particular significance, only in newborns carrying rs1799809 AA genotype, negatively significant associations between PROC methylation levels and exposure concentrations of air pollutants were observed. Further, we observed a significant interactive effect between neonatal rs1799809 genotype and SO2 exposure during the entire pregnancy on neonatal PROC methylation levels. Prenatal exposure to ambient air pollutants specifically was associated with the neonatal PROC promoter methylation level of newborns carrying the rs1799809 AA genotype. Taken together, these findings suggest that neonatal PROC methylation levels are associated with prenatal exposure to ambient air pollutants, and this association can be modified by rs1799809 genotype.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have