Abstract

The modeling of crash count data is a very important topic in highway safety. As documented in the literature, given the characteristics associated with crash data, transportation safety analysts have proposed a significant number of analysis tools, statistical methods and models for analyzing such data. Among the data issues, we find the one related to crash data which have a large amount of zeros and a long or heavy tail. It has been found that using this kind of dataset could lead to erroneous results or conclusions if the wrong statistical tools or methods are used. Thus, the purpose of this paper is to introduce a new distribution, known as the negative binomial-Lindley (NB-L), which has very recently been introduced for analyzing data characterized by a large number of zeros. The NB-L offers the advantage of being able to handle this kind of datasets, while still maintaining similar characteristics as the traditional negative binomial (NB). In other words, the NB-L is a two-parameter distribution and the long-term mean is never equal to zero. To examine this distribution, simulated and observed data were used. The results show that the NB-L can provide a better statistical fit than the traditional NB for datasets that contain a large amount of zeros.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.