Abstract

Negative bias temperature instability (NBTI), in which interface traps and positive oxide charge are generated in metal–oxide–silicon (MOS) structures under negative gate bias, in particular at elevated temperature, has come to the forefront of critical reliability phenomena in advanced CMOS technology. The purpose of this review is to bring together much of the latest experimental information and recent developments in theoretical understanding of NBTI. The review includes comprehensive summaries of the basic phenomenology, including time- and frequency-dependent effects (relaxation), and process dependences; theory, including drift–diffusion models and microscopic models for interface states and fixed charge, and the role of nitrogen; and the practical implications for circuit performance and new gate-stack materials. Some open questions are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.