Abstract

BACKGROUND: At the present moment, the etiological diagnosis of SARS-CoV-2 is based on the polymerase chain reaction (PCR). False negative cases are increasingly reported in several studies using reverse transcription-PCR (RT-PCR). For example, the positive rate of RT-PCR for throat swabs was reported to be about 60% in early stage of COVID-19.
 AIM: We aimed to present metagenomic next-generation sequencing (mNGS) as a potential tool to detect pathogens.
 METHODS: In the recent year, mNGS is shown the potential to detect pathogens without the need of hypothesis guided approach and is proven to be highly effective.
 RESULTS: A recent prospective study in the United States compared the diagnostic performance of routine diagnostic tests with mNGS and showed that mNGS detected a bacteria or virus in the CSF of 13 of 58 patients presenting with meningoencephalitis who were negative for or not assessed with routine diagnostic test including PCR. NGS also has the advantage to cover entire viral genomes.
 CONCLUSION: As viral metagenomics has significantly improved in recent years and become more cost effective, we think that a change in the approach toward a shot-gun metagenomic testing should be explored and could potentially aid the diagnosis of COVID-19 cases and the management of this pandemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.