Abstract

Many large marine species are vulnerable to anthropogenic pressures, and substantial declines have been documented across a range of taxa. Many of these species are also long-lived, have low individual resighting rates and high levels of individual heterogeneity in capture probability, which complicates assessments of their conservation status with capture-�mark-�recapture (CMR) models. Few studies have been able to apply CMR models to whale sharks Rhincodon typus, the world’s largest fish. One of their aggregation sites off Mafia Island in Tanzania is characterised by unusually high residency of this Endangered species, making it an ideal target for CMR methods. Three different CMR models were fitted to an 8 yr photo-identification data set to estimate abundance, population trend and demographic parameters. As anticipated, resighting rates were unusually high compared to other aggregations. Different CMR models produced broadly similar parameter estimates, showing a stable population trend with high survivorship and limited recruitment. Tagging and biopsy sampling for concurrent research did not negatively affect those sharks’ apparent survival or capture probabilities. Scenario-based power analyses showed that only pronounced abundance trends (±30%) would be detectable over our study period, at a 90% level of probability, even with the relatively high precision in yearly abundance estimates achieved here. Other, more transient whale shark aggregations, with reduced precision in abundance estimates, may only be able to confidently detect a similar trend with CMR models after 15-20 yr of observations. Precautionary management and long-term monitoring will be required to assist and document the recovery of this iconic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call