Abstract

BackgroundPanax ginseng Meyer is one of the most valuable medicinal plants which is enriched in anti-microbe secondary metabolites and widely used in traditional medicine. Botrytis cinerea is a necrotrophic fungus that causes gray mold disease in a broad range of hosts. B. cinerea could overcome the ginseng defense and cause serious leaf and root diseases with unknown mechanism. MethodsWe conducted simultaneous transcriptomic and metabolomic analysis of the host to investigate the defense response of ginseng affected by B. cinerea. The gene deletion and replacement were then performed to study the pathogenic gene in B. cinerea during ginseng - fungi interaction. ResultsUpon B. cinerea infection, ginseng defense responses were switched from the activation to repression, thus the expression of many defense genes decreased and the biosynthesis of antifungal metabolites were reduced. Particularly, ginseng metabolites like kaempferol, quercetin and luteolin which could inhibit fungi growth were decreased after B. cinerea infection. B. cinerea quercetin dioxygenase (Qdo) involved in catalyzing flavonoids degradation and △BcQdo mutants showed increased substrates accumulation and reduced disease development. ConclusionThis work indicates the flavonoids play a role in ginseng defense and BcQdo involves in B. cinerea virulence towards the P. ginseng. B. cinerea promotes disease development in ginseng by suppressing of defense related genes expression and reduction of antifungal metabolites biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call