Abstract
Botrytis cinerea (B. cinerea) causes gray mold disease (GMD), which results in physiological disorders in plants that decrease the longevity and economic value of horticultural crops. To prevent the spread of GMD during distribution, a rapid, early detection technique is necessary. Thermal imaging has been used for GMD detection in various plants, including potted roses; however, its application to cut roses, which have a high global demand, has not been established. In this study, we investigated the utility of thermal imaging for the early detection of B. cinerea infection in cut roses by monitoring changes in petal temperature after fungal inoculation. We examined the effects of GMD on the postharvest quality and petal temperature of cut roses treated with different concentrations of fungal conidial suspensions and chemicals. B. cinerea infection decreased the flower opening, disrupted the water balance, and decreased the vase life of cut roses. Additionally, the average temperature of rose petals was higher for infected flowers than for non-inoculated flowers. One day before the appearance of necrotic symptoms (day 1 of the vase period), the petal temperature in infected flowers was significantly higher, by 1.1 °C, than that of non-inoculated flowers. The GMD-induced increase in petal temperature was associated with the mRNA levels of genes related to ethylene, reactive oxygen species, and water transport. Furthermore, the increase in temperature caused by GMD was strongly correlated with symptom severity and fungal biomass. A multiple regression analysis revealed that the disease incidence in the petals was positively related to the petal temperature one day before the appearance of necrotic symptoms. These results show that thermography is an effective technique for evaluating changes in petal temperature and a possible method for early GMD detection in the cut flower industry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.