Abstract
Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order of all candidates. Recently, this approach was generalized to bucket orders, which allow ties. In this work we further generalize and consider total, bucket, interval and partial orders. The disagreement between two orders is measured by the nearest neighbor Spearman footrule distance, which has not been studied so far. For two bucket orders and for a total and an interval order the nearest neighbor Spearman footrule distance is shown to be computable in linear time, whereas for a total and a partial order the computation is NP-hard, 4-approximable and fixed-parameter tractable. Moreover, in contrast to the well-known efficient solution of the rank aggregation problem for total orders, we prove the NP-completeness for bucket orders and establish a 4-approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.