Abstract
Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order or a bucket order of all candidates, where bucket orders allow ties. In this work we consider the generalization of total and bucket orders to partial orders and compare them by the nearest neighbor and the Hausdorff Kendall tau distances. For total and bucket orders these distances can be computed in $\mathcal{O}(n \log n)$ time. We show that the computation of the nearest neighbor Kendall tau distance is NP-hard, 2-approximable and fixed-parameter tractable for a total and a partial order. The computation of the Hausdorff Kendall tau distance for a total and a partial order is shown to be coNP-hard. The rank aggregation problem is known to be NP-complete for total and bucket orders, even for four voters and solvable in $\mathcal{O}(n\log n)$ for two voters. It is NP-complete for two partial orders and the nearest neighbor Kendall tau distance. For the Hausdorff Kendall tau distance it is in $\mathbf{\Sigma_2^p}$ , but not in NP or coNP unless $\ensuremath{\mathbf{NP}} = \ensuremath{\mathbf{coNP}} $ , even for four voters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.