Abstract

We consider the behaviour of solutions to the nonlinear shallow-water equations which describe wave runup on a plane beach, concentrating on the behaviour at and just behind the moving shoreline. We develop regular series expansions for the hydrodynamic variables behind the shoreline, which are valid for any smooth initial condition for the waveform. We then develop asymptotic descriptions of the shoreline motion under localized initial conditions, in particular a localized Gaussian waveform: we obtain estimates for the maximum runup and drawdown of the wave, for its maximum velocities and the forces it is able to exert on objects in its path, and for the conditions under which such a wave breaks down. We show how these results may be extended to include initial velocity conditions and initial waveforms which may be approximated as the sum of several Gaussians. Finally, we relate these results tentatively to the observed behaviour of a tsunami.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.