Abstract
We consider a single-band approximation to the random Schrodinger operator in an external magnetic field. The random potential consists of delta functions of random strengths situated on the sites of a regular two-dimensional lattice. We characterize the entire spectrum of this Hamiltonian when the magnetic field is sufficiently high. We show that the whole spectrum is pure point, the energy coinciding with the first Landau level in the absence of a random potential being infinitely degenerate, while the eigenfunctions corresponding to energies in the rest of the spectrum are localized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.