Abstract

We consider a random Schro\"dinger operator in an external magnetic field. The random potential consists of delta functions of random strengths situated on the sites of a regular two-dimensional lattice. We characterize the spectrum in the lowest N Landau bands of this random Hamiltonian when the magnetic field is sufficiently strong, depending on N. We show that the spectrum in these bands is entirely pure point, that the energies coinciding with the Landau levels are infinitely degenerate and that the eigenfunctions corresponding to energies in the remainder of the spectrum are localized with a uniformly bounded localization length. By relating the Hamiltonian to a lattice operator we are able to use the Aizenman-Molchanov method to prove localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.