Abstract

The electron capture parameters and photoionization cross section of the unintentional deep levels, which are responsible for photoelectrical memory in GaAs/AlGaAs multilayer quantum-well structures, have been found from an analysis of the kinetics of the excess current during and after optical illumination of these structures. The dependence of the photoionization cross section on the photon energy, the capture cross section, and the energy barrier for capture of an electron from the bottom of the conduction band indicate that the unintentional deep levels are DX centers formed by the silicon impurity. These DX centers probably appear during growth of the structures as a result of silicon diffusion from the quantum wells along as-grown defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.