Abstract
HypothesisThe self-assembly of amphiphilic molecules onto solid substrates can result both in the formation of monolayers and multilayers. However, on oxidized and non-oxidized copper (Cu), only monolayer formation was reported for phosphonic acids possessing one phosphate head group. Here, the adsorption of octadecylphosphonic acid (ODPA) on Cu substrates through a self-assembly process was investigated with the initial hypothesis of monolayer formation. ExperimentsThe relative amount of ODPA adsorbed on a Cu substrate was determined by infrared reflection/absorption spectroscopy (IRRAS) and by atomic force microscopy (AFM) investigations before and after ODPA deposition. X-ray photoelectron spectroscopy (XPS) with sputtering was used to characterize the nature of the layers. FindingsThe results show that the thickness of the ODPA layer increased with deposition time, and after 1 h a multilayer film with a thickness of some tens of nm was formed. The film was robust and required long-time sonication for removal. The origin of the film robustness was attributed to the release of Cu ions, resulting in the formation of Cu-ODPA complexes with Cu ions in the form of Cu(I). Preadsorbing a monolayer of octadecylthiol (ODT) onto the Cu resulted in no ODPA adsorption, since the release of Cu(I) ions was abolished.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.