Abstract

Pulsed hydrogen exchange and other studies of the kinetic refolding pathways of several small proteins have established that folding intermediates with native-like secondary structures are well populated, but these studies have also shown that the folding kinetics are not well synchronized. Older studies of the kinetics of formation of the native protein, monitored by optical probes, indicate that the folding kinetics should be synchronized. The model commonly used in these studies is the simple sequential model, which postulates a unique folding pathway with defined and sequential intermediates. Theories of the folding process and Monte Carlo simulations of folding suggest that neither the folding pathway nor the set of folding intermediates is unique, and that folding intermediates accumulate because of kinetic traps caused by partial misfolding. Recent experiments with cytochrome c lend support to this 'new view' of folding pathways. These different views of the folding process are discussed. Misfolding and consequent slowing down of the folding process as a result of cis-trans isomerization about prolyl peptide bonds in the unfolded protein are well known; isomerization occurs before refolding is initiated. The occurrence of equilibrium intermediates on the kinetic folding pathways of some proteins, such as alpha-lactalbumin and apomyoglobin, argues that these intermediates are not caused by kinetic traps but rather are stable intermediates under certain conditions, and this conclusion is consistent with a sequential model of folding. Folding reactions with successive kinetic intermediates, in which late intermediates are more highly folded than early intermediates, indicate that folding is hierarchical. New experiments that test the predictions of the classical and the new views are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.