Abstract

AbstractLight‐induced degradation of minority carrier lifetime in silicon is caused by the formation of two B‐O recombination centres: fast‐stage centres (FRC) and slow‐stage centres (SRC). FRC were concluded to emerge by a carrier‐assisted reconfiguration of a latent BO2 defect composed of a substitutional boron atom and an oxygen dimer. The nature of SRC however remained uncertain; this defect appeared to involve an interstitial boron atom rather than a substitutional one. More recent data on SRC in boron‐containing compensated p‐Si and n‐Si now show that the SRC actually emerge in the same way as FRC: by a reconfiguration of BO2, but from a different latent form. The two latent BO2 defects (the precursors for FRC and for SRC) are created during a cooling stage after the last high‐temperature anneal, and their concentration, proportional to the boron concentration and squared oxygen concentration, depends on the cooling rate. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.