Abstract

The native point defects in C14 Mg2Ca Laves phase are studied from the first-principles density functional theory calculations within GGA approximation. The defect formation energies indicate that anti-site defects are energetically favored over vacancies. Under Mg-rich and even general Ca-rich condition, defect MgCa of Mg anti-site on Ca sublattice is favorable owing to the lowest formation energy. The CaMg2 defect of Ca anti-site on Mg2 sublattice is also likely dominant only under extreme Ca-rich environment. The present results could explain reasonably the asymmetric off-stoichiometry of Mg2Ca. The effective point defect concentrations of Mg2Ca as a function of composition and temperature at experimental range are also calculated from a canonical statistical model, and the derived results show a linear relationship between the logarithm of defect concentration and T−1. Geometrical factor is further studied, and it is found that atomic size possesses an obvious influence on the structure of point defect in Mg2Ca. The electronic feature is further studied to reveal underlying mechanism for formation of point defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.