Abstract

This research focuses on the effect of bonding temperature and holding time on the interfacial microstructure, mechanical performance and fracture behavior of diffusion bonded TiAl and Ti2AlNb intermetallic alloys. Under the pressure of 20 MPa, various bonding temperatures and holding times were explored and the optimized bonding parameter was determined to be 975 °C/60 min. Along with the changing of bonding parameters, the bonding defect, elemental distribution, microstructural evolution, micro-nano mechanics and corresponding mechanical properties of bonded joints were investigated. The findings indicated that the reaction zone was composed of three distinct interfacial layers, that is, a dark gray α2 layer next to TiAl alloy, a light gray α2 layer with Al(Nb, Ti)2 particles distributing between layer II and layer III, and a B2 + O mixed layer adjacent Ti2AlNb alloy. The maximum elastic modulus of 205 GPa was measured in the α2 phase on the Ti2AlNb side, whereas the Al(Nb, Ti)2 particles exhibited the highest nano-hardness of 14.5 GPa. By optimizing the bonding parameters, a subtle suture structure between layers I and II and well-distributed Al(Nb, Ti)2 particles were regulated at the bonding interface, which endowed the resultant joint at 975 °C for 60 min with shear strength of 319 MPa. The subtle suture structure between layer I and layer II effectively prevented the propagation of fracture, while the fine Al(Nb, Ti)2 particles alleviated the stress concentration at the bonding interface. Furthermore, crack bridging and crack blunting also enhanced the mechanical performance of the joint. The results in this paper provide a promising approach for addressing the challenge of joining dissimilar intermetallic alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.