Abstract

HypothesisCarbon nanotubes (CNTs) represent a novel platform for cellular delivery of therapeutic peptides. Chemically-functionalized CNTs may enhance peptide uptake by improving their membrane targeting properties. ExperimentsUsing coarse-grained (CG) molecular dynamics (MD) simulations, we investigate membrane interactions of a peptide conjugated to pristine and chemically-modified CNTs. As proof of principle, we focus on their interactions with PM2, an amphipathic stapled peptide that inhibits the E3 ubiquitin ligase HDM2 from negatively regulating the p53 tumor suppressor. CNT interaction with both simple planar lipid bilayers as well as spherical lipid vesicles was studied, the latter as a surrogate for curved cellular membranes. FindingsMembrane permeation was rapid and spontaneous for both pristine and oxidized CNTs when unconjugated. This was slowed upon addition of a noncovalently attached peptide surface “sheath”, which may be an effective way to slow CNT entry and avert membrane rupture. The CNT conjugates were observed to “desheath” their peptide layer at the bilayer interface upon insertion, leaving their cargo behind in the outer leaflet. This suggests that a synergy may exist to optimize CNT safety whilst enhancing the delivery efficiency of “hitchhiking” therapeutic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.