Abstract

Today, carbon nanotubes are involved in many medical types of research, such as biosensors and drug delivery. These nanotubes do not pose a problem for the body regarding toxicity to body cells and triggering the immune system. Nanotubes have also been proven to increase solubility and the possibility of targeted drug delivery. This study used molecular dynamics simulation to examine the nano-pumping process of the C20 molecule in carbon nanotubes at the different electric fields and atomic defects. The process of C20 molecule nano-pumping was examined by examining the changes in kinetic energy, potential energy, entropy, stress, temperature, and internal energy changes. In the following, the stress on the atomic structure was calculated. For this purpose, constant electric fields with the magnitudes of 0.01, 0.02, 0.03, 0.05, and 0.1 V/Å are used for the atomic structure. The results show that the nano-pumping time of the C20 molecule in the carbon nanotubes increases by increasing the electric field magnitude. The results also revealed that the kinetic energy in the structure decreased by increasing the electric fields, and the potential energy increased. As the potential energy increased in the atomic structure, the stability increased. Therefore, it is expected that the C20 molecule nano-pumping time will increase. The following examined the effect of atomic defects in an electric field with a magnitude of 0.01 V/Å. For this purpose, the atomic defects with magnitudes of 1 %, 2 %, 3 %, and 4 % were used for carbon nanotubes. The results revealed that increasing the atomic defects increased the C20 molecule nano-pumping time. Furthermore, the stress on the structure increased by increasing the atomic defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call