Abstract
As one of the most physically demanding sports in the Olympic Games, cross-country skiing poses considerable challenges with respect to both force generation and endurance during the combined upper- and lower-body effort of varying intensity and duration. The isoforms of myosin in skeletal muscle have long been considered not only to define the contractile properties, but also to determine metabolic capacities. The current investigation was designed to explore the relationship between these isoforms and metabolic profiles in the arms (triceps brachii) and legs (vastus lateralis) as well as the range of training responses in the muscle fibers of elite cross-country skiers with equally and exceptionally well-trained upper and lower bodies. The proportion of myosin heavy chain (MHC)-1 was higher in the leg (58 ± 2% [34–69%]) than arm (40 ± 3% [24–57%]), although the mitochondrial volume percentages [8.6 ± 1.6 (leg) and 9.0 ± 2.0 (arm)], and average number of capillaries per fiber [5.8 ± 0.8 (leg) and 6.3 ± 0.3 (arm)] were the same. In these comparable highly trained leg and arm muscles, the maximal citrate synthase (CS) activity was the same. Still, 3-hydroxy-acyl-CoA-dehydrogenase (HAD) capacity was 52% higher (P < 0.05) in the leg compared to arm muscles, suggesting a relatively higher capacity for lipid oxidation in leg muscle, which cannot be explained by the different fiber type distributions. For both limbs combined, HAD activity was correlated with the content of MHC-1 (r2 = 0.32, P = 0.011), whereas CS activity was not. Thus, in these highly trained cross-country skiers capillarization of and mitochondrial volume in type 2 fiber can be at least as high as in type 1 fibers, indicating a divergence between fiber type pattern and aerobic metabolic capacity. The considerable variability in oxidative metabolism with similar MHC profiles provides a new perspective on exercise training. Furthermore, the clear differences between equally well-trained arm and leg muscles regarding HAD activity cannot be explained by training status or MHC distribution, thereby indicating an intrinsic metabolic difference between the upper and lower body. Moreover, trained type 1 and type 2A muscle fibers exhibited similar aerobic capacity regardless of whether they were located in an arm or leg muscle.
Highlights
Among the most demanding of Olympic sports, cross-country skiing competitions on varying terrain require the use of a variety of skiing techniques that involve the upper and/or lower body to different extents
We demonstrate that well-trained type 1 and type 2 muscle fibers can have similar capillarization, regardless of whether they are located in arm or leg muscle and that the capillarization is not linked with the muscle fiber type, indicating a divergence between fiber type pattern and aerobic metabolic capacity
These findings provide a new perspective, with a divergence between fiber type and aerobic metabolic capacity, and considerable variability in the metabolic profile of the various myosin heavy chain (MHC)-isoforms which is closely related to the usage of the muscle fiber
Summary
Among the most demanding of Olympic sports, cross-country skiing competitions on varying terrain require the use of a variety of skiing techniques that involve the upper and/or lower body to different extents. In recent decades, this primarily endurance sport has changed to include novel events such as pursuit, mass-start, and sprint races, with head-to-head competitions and a wider range of speeds. Muscle fibers are distinguished from one another on the basis of (1) the contractile apparatus [myosin heavy chain (MHC) or ATPase isoforms]; (2) contractile characteristics (fast vs slow twitch); (3) Ca2+ handling properties and metabolic profile (oxidative or glycolytic), with the golden standard being the MHC-isoform (Schiaffino and Reggiani, 2011). Metabolic variation within each fiber type and fibers in arm and leg muscle is less well explored, both with regard to extent and influence on the metabolic response of the fiber
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have