Abstract
The multitype continuous-time Markov branching process has many biological applications where the environmental factors vary in a periodic manner. Circadian or diurnal rhythms in cell kinetics are an important example. It is shown that in the supercritical positively regular case the proportions of individuals of various types converge in probability to a non-random periodic vector, independent of the initial conditions, while the absolute numbers of individuals of various types converge in probability to that vector multiplied by a random variable whose distribution depends on the initial conditions. It is noted that the proofs are straightforward extensions of the well-known results for a constant environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have