Abstract
A multiscale modelling framework that employs molecular dynamics and hydrodynamics principles has been developed to describe the dynamics of hybrid particles. Based on the principle of least action, the equations of motion for hybrid particles were derived and verified by using the Gauss principle of least constraints testifying to their accuracy and applicability under various system constraints. The proposed scheme has been implemented in a popular open-source molecular dynamics code GROMACS. The simulation for liquid argon under equilibrium conditions in the hydrodynamic limit (s = 1) has demonstrated that the standard deviation of the density exhibits a remarkable agreement with predictions from a pure hydrodynamics model, validating the robustness of the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.