Abstract

Most variational principles in classical mechanics are based on the principle of least action, which is only a stationary principle. In contrast, Gauss' principle of least constraint is a true minimum principle. In this paper, we apply Gauss' principle to the mechanics of incompressible flows, thereby discovering the fundamental quantity that Nature minimizes in most flows encountered in everyday life. We show that the magnitude of the pressure gradient over the domain is minimum at every instant of time. We call it the principle of minimum pressure gradient (PMPG). It turns a fluid mechanics problem into a minimization one. We demonstrate this intriguing property by solving four classical problems in fluid mechanics using the PMPG without resorting to Navier–Stokes' equation. In some cases, the PMPG minimization approach is not any more efficient than solving Navier–Stokes'. However, in other cases, it is more insightful and efficient. In fact, the inviscid version of the PMPG allowed solving the long-standing problem of the aerohydrodynamic lift over smooth cylindrical shapes where Euler's equation fails to provide a unique answer. The PMPG transcends Navier–Stokes' equations in its applicability to non-Newtonian fluids with arbitrary constitutive relations and fluids subject to arbitrary forcing (e.g., electromagnetic).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.