Abstract
An international audio equipment manufacturer would like to help its customers reduce unit shipping costs by adjusting order quantity according to product preference. We introduce the problem faced by the manufacturer as the Multiple Container Loading Problem with Preference (MCLPP) and propose a combinatorial formulation for the MCLPP. We develop a two-phase algorithm to solve the problem. In phase one, we estimate the most promising region of the solution space based on performance statistics of the sub-problem solver. In phase two, we find a feasible solution in the promising region by solving a series of 3D orthogonal packing problems. A unique feature of our approach is that we try to estimate the average capability of the sub-routine algorithm for the single container loading problem in phase one and take it into account in the overall planning. To obtain a useful estimate, we randomly generate a large set of single container loading problem instances that are statistically similar to the manufacturer’s historical order data. We generate a large set of test instances based on the historical data provided by the manufacturer and conduct extensive computational experiments to demonstrate the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.