Abstract

The nature of electronic states in disordered two-dimensional (2D) systems is investigated. With this aim, we present our calculations of both density of states and d.c. conductivity for square lattices modelling the Anderson Hamiltonian with on-site energies randomly chosen from a box distribution of width W. For weak disorder (W), the eigenfunctions calculated by means of the Lanczos diagonalization algorithm display spatial fluctuations reflecting their (multi)fractal behaviour. For increasing disorder the observed increase of the curdling of the wavefunction reflects its stronger localization. However, as a function of energy, the eigenstates at energy mod E mod /V approximately=1.5 are found to be the least localized over the band. Our d.c. conductivity results suggest a critical fractal dimension dc*=1.48+or-0.17 to discriminate between me exponentially and the power-law-localized states. Consequences of the localization for transport properties are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.