Abstract
It is well known that multicomponent integrable systems provide a method for analyzing phenomena with numerous interactions, due to the interactions between their different components. In this paper, we derive the multicomponent higher-order Chen–Lee–Liu (mHOCLL) system through the zero-curvature equation and recursive operators. Then, we apply the trace identity to obtain the bi-Hamiltonian structure of mHOCLL system, which certifies that the constructed system is integrable. Considering the spectral problem of the Lax pair, a related Riemann–Hilbert (RH) problem of this integrable system is naturally constructed with zero background, and the symmetry of this spectral problem is given. On the one hand, the explicit expression for the mHOCLL solution is not available when the RH problem is regular. However, according to the formal solution obtained using the Plemelj formula, the long-time asymptotic state of the mHOCLL solution can be obtained. On the other hand, the N-soliton solutions can be explicitly gained when the scattering problem is reflectionless, and its long-time behavior can still be discussed. Finally, the determinant form of the N-soliton solution is given, and one-, two-, and three-soliton solutions as specific examples are shown via the figures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.