Abstract
AbstractNonlinear Riemann ‐ Hilbert problems (RHP) generalize two fundamental classical problems for complex analytic functions, namely: 1. the conformal mapping problem, and 2. the linear Riemann ‐ Hilbert problem. This paper presents new results on global existence for the nonlinear (RHP) in doubly connected domains with nonclosed restriction curves for the boundary data. More precisely, our nonlinear (RHP) is required to become „at infinity”︁, i.e., for solutions having large moduli, a linear (RHP) with variable coefficients. Global existence for q‐connected domains was already obtained in [9] for the special case that the restriction curves for the boundary data „at infinity”︁ coincide with straight lines corresponding to linear (RHP)‐s with special so‐called constant ‐ coefficient transversality boundary conditions. In this paper, the boundary conditions are much more general including highly nonlinear conditions for bounded solutions in the context of nontransversality. In order to prove global existence, we reduce the problem to nonlinear singular integral equations which can be treated by a degree theory of Fredholm ‐ quasiruled mappings specifically constructed for mappings defined by nonlinar pseudodifferential operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.