Abstract

Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect". Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice, which is supported by three stages of plasticity in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10-day winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, a transient local connectivity strengthening, and a delayed excitability increase. These plasticity events are causally linked. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the cascade of plasticity events as those during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning that ultimately leads to an increase in "aggressiveness" in repeated winners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.