Abstract

The production of trimethylamine (TMA) from quaternary amines such as l-carnitine or γ-butyrobetaine (4-(trimethylammonio)butanoate) by gut microbial enzymes has been linked to heart disease. This has led to interest in enzymes of the gut microbiome that might ameliorate net TMA production, such as members of the MttB superfamily of proteins, which can demethylate TMA (e.g., MttB) or l-carnitine (e.g., MtcB). Here, we show that the human gut acetogen Eubacterium limosum demethylates γ-butyrobetaine and produces MtyB, a previously uncharacterized MttB superfamily member catalyzing the demethylation of γ-butyrobetaine. Proteomic analyses of E. limosum grown on either γ-butyrobetaine or dl-lactate were employed to identify candidate proteins underlying catabolic demethylation of the growth substrate. Three proteins were significantly elevated in abundance in γ-butyrobetaine-grown cells: MtyB, MtqC (a corrinoid-binding protein), and MtqA (a corrinoid:tetrahydrofolate methyltransferase). Together, these proteins act as a γ-butyrobetaine:tetrahydrofolate methyltransferase system, forming a key intermediate of acetogenesis. Recombinant MtyB acts as a γ-butyrobetaine:MtqC methyltransferase but cannot methylate free cobalamin cofactor. MtyB is very similar to MtcB, the carnitine methyltransferase, but neither was detectable in cells grown on carnitine nor was detectable in cells grown with γ-butyrobetaine. Both quaternary amines are substrates for either enzyme, but kinetic analysis revealed that, in comparison to MtcB, MtyB has a lower apparent Km for γ-butyrobetaine and higher apparent Vmax, providing a rationale for MtyB abundance in γ-butyrobetaine-grown cells. As TMA is readily produced from γ-butyrobetaine, organisms with MtyB-like proteins may provide a means to lower levels of TMA and proatherogenic TMA-N-oxide via precursor competition.

Highlights

  • Recombinant MtyB acts as a γ-butyrobetaine:MtqC methyltransferase, but cannot methylate free functionally described member is the namesake, MttB, the trimethylamine (TMA) methyltransferase which initiates methanogenesis from that substrate by the methylation of a Co(I)-corrinoid protein (1)

  • Demethylate several quaternary amine (QA) (8,9,46), but not the Detected peptides were mapped against the closed proatherogenic QA, -butyrobetaine

  • We found that genome of E. limosum ATCC 8486 (45)

Read more

Summary

Introduction

The first abundance in -butyrobetaine-grown cells: MtyB, MtqC (a corrinoid-binding protein), and MtqA (a corrinoid:tetrahydrofolate methyltransferase). We employed a quantitative proteomic approach to identify candidate proteins that might kinetics comparing MtyB and the L-carnitine mediate the demethylation of -butyrobetaine and methyltransferase MtcB provide a physiological generate methyl-THF for acetogenesis.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.