Abstract

We discuss some aspects of the pressure (or interaction) driven Mott transition, in three-dimensional transition metal oxides by means of dynamical mean field theory. We isolate the universal properties of the transition from the aspects which depend more on the detailed chemistry of the compounds. In this light we can understand the main differences and the remarkable similarities between the NiSe x S 2− x and the V 2O 3 system. Both theory and experiment converge on the transfer of spectral weight from low energies to high energies as the universal mechanism underlying the Mott transition, and we comment on the possible relevance of these ideas to other metal to nonmetal transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.