Abstract

HypothesisThe dynamics of gas–liquid interfaces differs between aqueous surfactant and nanoparticle mixtures in rectangular cross-section capillaries. ExperimentsWe designed and fabricated a new microfluidic device with a meter-long channel and a noncircular cross section (35 μm by 100 μm by 1 m) to study the flow behavior of long bubbles in capillaries wetted by water as well as surfactant and nanoparticle solutions. Flow in the novel symmetric loop device maintains essentially straight and inertialess conditions over a wide range of flow rates. FindingsThe pressure-drop versus velocity relationship of long bubbles in capillaries with noncircular cross sections has been studied theoretically but not extensively validated. The measured pressure drop (normalized with respect to interfacial properties) experienced by bubbles varies as Ca2/3 over the range 10-7<Ca<10-4 where Ca=μUσ. Thus, the drag also scales as Ca2/3. The measurements from our new device thereby confirm previous theoretical relationships of the flow of long gas bubbles wetted by surfactant solutions in noncircular capillaries. Contrary to the hypothesis, the Ca2/3 drag–velocity relationship applies to gas bubbles in deionized water, nanoparticles in brine, surfactant in brine, and nanoparticle-surfactant mixtures in brine for the conditions studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.