Abstract
We present a high spectral resolution survey of the most metal-poor damped Lyman-alpha absorption systems (DLAs) aimed at probing the nature and nucleosynthesis of the earliest generations of stars. Our survey comprises 22 systems with iron abundance less than 1/100 solar; observations of seven of these are reported here for the first time. Together with recent measures of the abundances of C and O in Galactic metal-poor stars, we reinvestigate the trend of C/O in the very metal-poor regime and we compare, for the first time, the O/Fe ratios in the most metal-poor DLAs and in halo stars. We confirm the near-solar values of C/O in DLAs at the lowest metallicities probed, and find that their distribution is in agreement with that seen in Galactic halo stars. We find that the O/Fe ratio in very metal-poor (VMP) DLAs is essentially constant, and shows very little dispersion, with a mean [<O/Fe>] = +0.39 +/- 0.12, in good agreement with the values measured in Galactic halo stars when the oxygen abundance is measured from the [O I] 6300 line. We speculate that such good agreement in the observed abundance trends points to a universal origin for these metals. In view of this agreement, we construct the abundance pattern for a typical very metal-poor DLA and compare it to model calculations of Population II and Population III nucleosynthesis to determine the origin of the metals in VMP DLAs. Our results suggest that the most metal-poor DLAs may have been enriched by a generation of metal-free stars; however, given that abundance measurements are currently available for only a few elements, we cannot yet rule out an additional contribution from Population II stars.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have