Abstract

Among the many anthropogenic abiotic stresses, manganese (Mn) toxicity has been recognized for its impact on aquatic ecosystems as well as on the biological components of these ecosystems, including aquatic plants. The objective of this study was to determine the Mn accumulation ability of aquatic macrophytes (Azolla caroliniana, Salvinia minima and Spirodela polyrhiza) and evaluate the morphophysiological responses of the species that gather the highest amount of Mn when exposed to a supra-optimal supply of manganese. The experiments were conducted in the laboratory, and the effects of Mn were evaluated based on plant growth; the concentration of total chlorophyll, carotenoids, and anthocyanins; the enzymatic activity of catalase and peroxidase; and leaf anatomy. All of the studied species accumulated Mn in their tissues. Moreover, it was observed that this accumulation was dependent on the concentration of the metal in solution. S. polyrhiza showed higher concentrations of Mn in its tissues (17.062 mg g−1 dry weight (DW)), followed by S. minima (4.283 mg g−1 DW) and A. caroliniana (1.341 mg g−1 DW). Despite the Mn accumulation in all species, S. polyrhiza was the only one selected for further analyses because of its greater ability to accumulate Mn. The high Mn concentration found in tissues of S. polyrhiza suggests that this species has the potential to sequester and accumulate this metal. However, a sensitive response in the plants exposed to higher Mn concentrations (0.4 mM) was observed. The phytotoxicity effects of this accumulation were responsible for a decrease in the plant growth, a reduction in the pigment content (total chlorophyll, carotenoids, and anthocyanins), a low activity of catalase, and the disarrangement of the leaf aerenchyma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.