Abstract

We present three novel forms of the Monge–Ampère equation, which is used, e.g., in image processing and in reconstruction of mass transportation in the primordial Universe. The central role in this paper is played by our Fourier integral form, for which we establish positivity and sharp bound properties of the kernels. This is the basis for the development of a new method for solving numerically the space-periodic Monge–Ampère problem in an odd-dimensional space. Convergence is illustrated for a test problem of cosmological type, in which a Gaussian distribution of matter is assumed in each localised object, and the right-hand side of the Monge–Ampère equation is a sum of such distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.