Abstract
The molecular origin of the sweet taste is still elusive. Herein, the canonical AH-B-X theory of sweet taste is extended by resurveying various sweeteners, which provides deeper insights into an analogous intramolecular connectivity pattern of both glucophores in sweeteners and their interaction counterparts in sweet taste receptor TAS1R2/TAS1R3: electrostatic complementarity and topochemical compatibility. Furthermore, their complementary interaction is elaborately illustrated, accounting for the common molecular feature of eliciting sweetness. Moreover, it highlights that multiple glucophores in a topological system synergistically mediate the elicitation and performance of sweetness. This perspective presents a meaningful framework for the structure-activity relationship-based molecular design and modification of sweeteners and sheds light on the mechanism of molecular evolution of TAS1R2s/TAS1R3s. The link between palatability of sweeteners and harmony relationships between their structural components via stereochemistry and network has significant implications to illuminate the underlying mechanisms by which nature designs chemical reactions to elicit the most important taste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.