Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with no ideal drugs. Our previous research demonstrated that phosphodiesterase 1 (PDE1) could be a promising target for the treatment of IPF. However, only a few selective PDE1 inhibitors are available, and the mechanism of recognition between inhibitors and the PDE1 protein is not fully understood. This study carried out a step-by-step optimization of a dihydropyrimidine hit Z94555858. By targeting the metal pocket of PDE1, a lead compound 3f was obtained, exhibiting an IC50 value of 11 nM against PDE1, moderate selectivity over other PDEs, and significant anti-fibrotic effects in bleomycin-induced pulmonary fibrosis rats. The structure-activity relationship study aided by molecular docking revealed that forming halogen bonds with water in the metal pocket greatly enhanced the PDE1 inhibition, providing a novel strategy for further rational design of PDE1 inhibitors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.