Abstract
We have examined the influence of the intermolecular interaction on the local electronic structure by using X-ray absorption and emission spectra of liquid methanol, water, and their mixtures (in molar ratios of 9:1 and 7:3). We find a strong involvement of hydrogen bonding in the mixing of water and methanol molecules. The local electronic structure of water and methanol clusters, where water cluster is bridging within a 6-member open-ring structured methanol cluster, is separately determined. The experimental findings suggest an incomplete mixing of water–alcohol systems and a strong self-association between methanol chain and water cluster through hydrogen bonding. The enhancement of joint water–methanol open-ring structure owes the explanation to the loss of entropy of the aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.