Abstract
The A 2Pi(u) - X 2Pi(g) electronic band system of the jet-cooled CS2 + ion has been studied by laser-induced fluorescence and wavelength-resolved emission techniques. The ions were produced in a pulsed electric discharge jet using a precursor mixture of carbon disulfide vapor in high-pressure argon. Rotational analysis of the high-resolution spectrum of the 2Pi32 component of the 0(0) 0 band gave linear-molecule molecular structures of r0" = 1.5554(10) A and r0' = 1.6172(12) A. Renner-Teller analyses of the vibronic structure in the spectra showed that the ground-state spin-orbit splitting (A = -447.0 cm(-1)) is much larger than that of the excited state (A = -177.5 cm(-1)), but that the Renner-Teller parameters are of similar magnitude and that a strong nu1 - 2nu2 Fermi resonance occurs in both states. Previous analyses of the vibronic structure in the ground and excited states of the ion from pulsed field-ionization-photoelectron data are shown to be substantially correct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.